Excess Capacity Measurement in Western Pacific & the Implications to Fishery Management

Minling Pan
October 27, 2004

Pacific Islands Fisheries Science Center

Presentation Outline

- Difficulties
- Results in Western Pacific Region
- Result evaluation

Definition of Capacity

- Capacity of a fleet harvest capacity
 - Physical description
 - Vessel size (length, tonnage)
 - Number of vessels
 - Measured by output
 - The amount of fish that a vessel or a fleet is able to catch
- Capacity of a stock resource capacity

Resource Capacity

Harvest Capacity – moving target

- Given by a fleet/vessel
- Subject to fish abundance
- Subject to nature uncertainty
- Various by fishermen

Gordon-Schaefer Model

Excess Capacity of a Fish Stock = "Overcapacity"

Three Methods Suggested by the National Task Force

- Peak-to-peak approach
- Stochastic production frontier
- Data envelopment analysis (DEA)
- Create an index (coefficient): capacity utilization level (CUL)

$$CUL = Y/Y*$$

Y: Actual output

Y*: Potential output or capacity output

-- the best in a history if time-series data are used

Input and Output Definitions

Excess capacity assessment of Hawaii longline fishery under different output definitions

Excess Capacity

- \blacksquare CUL = 1 -- No excess capacity
- CUL < 1 -- Excess capacity exits -- a fleet *is* able to harvest more than it presently does
- Causes of excess capacity
 - Technical inefficiency/technology changes
 - Weather conditions
 - Stock abundance
 - Regulatory impact
 - ✓ Too many boats

Excess Capacity Assessment of Four Main Fisheries in Western Pacific

Fleet	Output varaible	Input variables	Data period	Average CUL*	Possible excess capacity
Hawaii		# of vessels,			
Longline	Landings	# of trips	1987-2001	79%	21%
A. Samoa		# of vessels,			
Longline	Landings	# of hooks	1996-2001	94%	6%
NWHI		# of vessels,			
Bottomfish	Landings	# of trips	1984-2001	73%	27%
NWHI		# of vessels,			
Lobster	Landings	# of traps-hauls	1983-1999	67%	33%

^{*} Estimated by DEA (data envelopment analysis)

Would Excess Capacity be a Problem?

- Examining the trend
- Examining the causes

Time Trends of Excess Capacity of the Two Longline Fisheries

No obvious decline or increase trend in excess capacity

Hawaii Longline Fleet Size vs. Excess Capacity

Excess capacity may be not a result from too many boats

Time Trends of Excess Capacity of the NWHI Lobster and Bottomfish

Excess capacity increases overtime in both fisheries

Factors that May Cause Increase of Excess Capacity (NWHI lobster)

■ Fish stock (CPUE) declined

CPUE		CUL	Excess Capacity
1983-1989	2.4 lobsters/trap	93%	17%
1990-1999	1.4 lobsters/trap	44%	56%

Regulation changed

	CPUE	Harvest Guideline	CUL	Excess Capacity
1989	1.71	None	100%	0%
1997	1.75	310,000	75%	25%

Regress Analysis on Excess Capacity of NWHI Lobster Fishery

Regressor	Coefficient (t value)
Constant	70.15 (5.37*)
Stock index (CPUE)	9.79 (1.77**)
Regulation change in 1991 (harvest guideline)	-36.01 (-3.86*)
Regulation change in 1998 (harvest guideline by zone)	-34.45 (-2.80*)

- 1. * Significant at 5% level, & ** significant at 10% level
- 2. R^2 adjusted = 0.72

Regress Analysis on Excess Capacity of NWHI Bottomfish Fishery

Regressor	Coefficient (t value)	Coefficient (t value)
Constant	-2.80 (0.10)	71.24 (3.59*)
Stock index SPR (spawning potential ratio)	1.43 (2.68*)	.46 (1.38)
Regulation change in 1990 (two zones)		-32.64 (-5.78*)
R ² adjusted	.29	.79

^{*} Significant at 5% level

NWHI Bottomfish Area Closure

Summary of Regression Analysis

- Both stock abundance and regulation changes show significant impact on excess capacity
 - ◆ Stock abundance ♠, excess capacity ♥
 - ◆ Regulations (TAC or area closure), excess capacity
- 72% of the excess capacity can be explained by regulatory and stock changes in the NWHI lobster fishery
- 79% for the NWHI bottomfish fishery

Conclusions

- Capacity is a moving target for fishery industry
- Excess capacity may cause by various factors beside "there are too many boats"
- Necessary to examine the causes of excess capacity before excess capacity measurement is applied to fishery management
- Regression analysis provide a useful tool to evaluate the excess capacity estimated by the frontier methods or Peek-to-peek method
 - Regulatory regime
 - ◆ Stock status

Question?